Journal of Organometallic Chemistry, 107 (1976) C37—C39
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

CYCLIC TRANSITION-METAL CARBENE COMPLEXES FROM RING-CLOSING REACTIONS ON THE π-BOUND SUBSTRATES CS₂ AND CSe₂. 1,3-DITHIOLAN-2-YLIDENE AND 1,3-DISELENOLAN-2-YLIDENE COMPLEXES OF RUTHENIUM(II) AND OSMIUM(II)

T.J. COLLINS, K.R. GRUNDY, W.R. ROPER* and S.F. WONG

Department of Chemistry, University of Auckland, Auckland (New Zealand)

(Received December 19th, 1975)

Summary

Os(CS₂)(CO)₂(PPh₃)₂, Os(CS₂)(CO)(CNR)(PPh₃)₂, Ru(CS₂)(CO)(CNR)-(PPh₃)₂ and Ru(CSe₂)(CO)₂(PPh₃)₂ react with 1,2-dibromoethane to give cationic and neutral 1,3-dithiolan-2-ylidene and 1,3 diselenolan-2-ylidene complexes.

Complexes involving the 1,3-dioxolan-2-ylidene ligand result from intramolecualr cyclisation of the product from $Mn(CO)_5^-$ and 2-chloroethyl chloroformate [1]. We describe here the synthesis of compounds containing sulphur and selenium analogues of the 1,3-dioxolan-2-ylidene ligand. The formation of $[OsI(C[SMe]_2)(CO)_2(PPh_3)_2]^+$ from $Os(CS_2)(CO)_2(PPh_3)_2$ and methyl iodide [2] suggested the possibility that with suitable difunctional alkyl halides, $X(CH_2)_nX$, heterocyclic carbene complexes might result. Accordingly, the reaction of $Ru(CS_2)(CO)(CNR)(PPh_3)_2$ [3], $Ru(CSe_2)(CO)_2(PPh_3)_2$ [4], $Os(CS_2)(CO)_2(PPh_3)_2$ [2], and $Os(CS_2)(CO)(CNR)(PPh_3)_2$ [5] with such reagents was investigated.

Os(CS₂)(CO)₂(PPh₃)₂ dissolves on warming in 1,2-dibromoethane to give a pale straw-coloured solution from which can be isolated, after the addition of NaClO₄, [OsBr(\dot{C} SCH₂CH₂ \dot{S})(CO)₂(PPh₃)₂]ClO₄. The IR spectrum (see Table 1) of this compound exhibits strong ν (CO) bands at 2060 and 1985 cm⁻¹ and bands attributable to the cyclic carbene ligand at 955 m and 860 cm⁻¹. Conclusive evidence for ring closure having occurred is derived from the ¹H NMR spectrum (see Table 1) which exhibits a singlet at τ 6.77 ppm for the 4 ring protons. This can be compared with the value of τ 6.00 ppm obtained for the carbene ligand in [OsCl(\dot{C} OCH₂CH₂O)(CO)(CNR)-(PPh₃)₂]ClO₄ [5].

^{*}To whom correspondence should be addressed.

Table 1

IR^g (cm⁻¹) And ¹H nmr^b (1, ppm) data for cyclic carbene complexes

Complex ^c	ν (CO)	ν (CN)	Chemical shifts
[OsBr(CSCH2CH2S)(CO)2(PPh3)2]+	2060, 1985		6.77
[OsBr(CSCH2CH2S)(CO)(CNR)(PPh3)2]+d	1975	2150	6.87
OsBr ₂ (CSCH ₂ CH ₂ S)(CO)(PPh ₃) ₂	1940		
[RuBr(CSCH2CH2S)(CO)(CNR)(PPh3)2]+d	1990	2150	6.85
[RuBr(CSeCH ₂ CH ₂ Se)(CO) ₂ (PPh ₃) ₂] ⁺	2060, 1997		6.40
RuBr ₂ (CSeCH ₂ CH ₂ Se)(CO)(PPh ₃) ₂	1968		

^aNujol mulls. ^bCDCl₃ solution. ^cAll compounds reported have satisfactory elemental analyses. Cations characterised as perchlorate salts. dR = p-tolyl.

The other CS_2 adducts and also $Ru(CSe_2)(CO)_2(PPh_3)_2$ react similarly with 1,2-dibromoethane producing the compounds described in Table 1. The two dicarbonyl cations are labile with respect to replacement of carbonyl with bromide and the neutral compounds $RuBr_2(CSeCH_2CH_2Se)(CO)(PPh_3)_2$ and $OsBr_2(CSCH_2CH_2S)(CO)(PPh_3)_2$ have also been characterised.

The mechanism of this reaction probably proceeds as shown in eq. 1.

The CS₂ adducts undergo similar reactions with 1,3-dibromopropane yielding 1,3-dithian-2-ylidene complexes. We have tried unsuccessfully to extend this reaction to the synthesis of thiazolidin-2-ylidene complexes through ring-closing reactions on π -bound isothiocyanate (RNCS) complexes.

We thank the N.Z. Universities Grants Committee for grants towards instrumental facilities and the award of Postgraduate Scholarships to T.J.C.

and K.R.G., and Johnson-Matthey Ltd for a generous loan of ruthenium trichloride and osmium tetroxide.

References

- 1 D.H. Bowen, M. Green, D.M. Grove, J.R. Moss and F.G.A. Stone, J. Chem. Soc., (1974) 1189. 2 K.R. Grundy, R.O. Harris and W.R. Roper, J. Organometal. Chem., 90 (1975) C34. 3 D.F. Christian, Thesis, University of Auckland, 1973.

- 4 G.R. Clark, K.R. Grundy, R.O. Harris, S.M. James and W.R. Roper, J. Organometal. Chem., 90 (1975) C37.
- 5 K.R. Grundy, Thesis, University of Auckland, 1975.